Evolve Further

View Original

NAD Patches - Do they work?

Introduction

NAD, or nicotinamide adenine dinucleotide, is a coenzyme found in all living cells. It plays a key role in a range of biological processes, including energy metabolism, DNA repair, and cellular signaling. In recent years, there has been growing interest in the use of NAD patches as a way to increase NAD levels in the body. In this article, we will explore what NAD patches are, how they work, and their potential health benefits.

What are NAD Patches?

NAD patches are transdermal patches that contain NAD precursors, such as nicotinamide riboside (NR) or nicotinamide mononucleotide (NMN). These precursors are converted into NAD in the body, increasing the levels of this important coenzyme.

How do NAD Patches Work?

NAD patches work by providing the body with NAD precursors, which are converted into NAD in the body. NAD is a critical coenzyme involved in a range of biological processes, including energy metabolism, DNA repair, and cellular signaling. By increasing NAD levels in the body, NAD patches may offer a range of potential health benefits.

Potential Health Benefits of NAD Patches

  1. Improved Energy Metabolism: NAD is involved in energy metabolism, helping to convert food into energy that can be used by the body. By increasing NAD levels in the body, NAD patches may help to improve energy metabolism, potentially leading to increased energy levels and improved athletic performance.

  2. Anti-Aging: NAD has been shown to play a role in aging, with declining NAD levels being associated with a range of age-related conditions. By increasing NAD levels in the body, NAD patches may help to slow the aging process, potentially reducing the risk of age-related conditions like Alzheimer's disease and cardiovascular disease.

  3. Improved Cognitive Function: NAD has been shown to play a role in cognitive function, with declining NAD levels being associated with cognitive decline. By increasing NAD levels in the body, NAD patches may help to improve cognitive function, potentially reducing the risk of conditions like dementia and Alzheimer's disease.

  4. Improved Exercise Performance: NAD has been shown to play a role in exercise performance, with declining NAD levels being associated with reduced endurance and muscle function. By increasing NAD levels in the body, NAD patches may help to improve exercise performance, potentially leading to increased endurance and muscle function.

  5. Potential Treatment for Neurological Disorders: NAD has been shown to have neuroprotective effects, potentially offering a treatment option for neurological disorders like Parkinson's disease and multiple sclerosis. By increasing NAD levels in the body, NAD patches may help to protect against neuronal damage, potentially reducing the risk of these conditions.

Conclusion

NAD patches are transdermal patches that contain NAD precursors, such as NR or NMN. By providing the body with these precursors, NAD patches may help to increase NAD levels in the body, potentially offering a range of health benefits, including improved energy metabolism, anti-aging effects, improved cognitive function, improved exercise performance, and potential treatment for neurological disorders. However, more research is needed to fully understand the potential benefits and risks of using NAD patches.

Sources:

  1. Braidy, N., Berg, J., Clement, J., Khorshidi, F., Poljak, A., Jayasena, T., ... & Sachdev, P. (2021). Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxidants & Redox Signaling

  2. Long, A. N., Owens, K., Schlappal, A. E., Kristian, T., Fishman, P. S., & Schuh, R. A. (2015). Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurology, 15(1), 19. doi: 10.1186/s12883-015-0272-x

  3. Mills, K. F., Yoshida, S., Stein, L. R., Grozio, A., Kubota, S., Sasaki, Y., ... & Imai, S. (2016). Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metabolism, 24(6), 795-806. doi: 10.1016/j.cmet.2016.09.013

  4. Moreno-Sánchez, R., Rodríguez-Enríquez, S., Marín-Hernández, A., & Saavedra, E. (2007). Energy metabolism in tumor cells. The FEBS Journal, 274(6), 1393-1418. doi: 10.1111/j.1742-4658.2007.05686.x

  5. Sinclair, D. A. (2013). Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice. Cell Metabolism, 17(6), 819-831. doi: 10.1016/j.cmet.2013.04.005

  6. Yoshino, J., Mills, K. F., Yoon, M. J., & Imai, S. (2011). Nicotinamide mononucleotide, a key NAD+ intermediate, mediates age-associated mitochondrial dysfunction in mice. Cell Metabolism, 10(6), 668-676. doi: 10.1016/j.cmet.2011.10.012