Evolve Further

View Original

APPLICATION OF STEM CELL TECHNOLOGY FOR ANTI-AGING

Stem cell therapies are becoming increasingly popular for anti-aging. Makeup, moisturizers and face masks line the shelves touting the benefits of various “stem cell” formulations. Celebrities and middle age business men and women are flocking to exotic locations to inject themselves with stem cells sucked from their belly fat. Is this all in vein or is there some credible science behind this?

Stem cells show a lot of promise for the treatment of aging and various age-related diseases but the science is new and there are very few high quality studies. In addition, there are many different formulations and delivery methods, each of which is not equally effective. 

In this article we will discuss the various applications of stem cells in anti-aging, and the efficacy of each approach.



WHAT ARE STEM CELLS?

Stem cells are cells which have the ability to divide and transform into other types of cells. They are involved in building every type of tissue in the human body. This is why stem cells have great potential for therapeutic uses in tissue regeneration and repair. 

Unfortunately, the number and function of stem cells in our bodies declines with age, this is one of the reasons why our bodies natural healing and repair processes decline with age, and is a contributing factor to many age-related diseases.




THERE ARE SEVERAL TYPES OF STEM CELLS

  • Pluripotent stem cells could become any type of cell in the body. For example, embryonic cells are pluripotent and can become stomach, lung, skin, or brain cells.

  • Multipotent stem cells develop into different specialized cells of a specific tissue. Unlike pluripotent cells, the fate of multipotent cells is limited. Mesenchymal stem cells (MSCs) are an example of multipotent cells that can develop into bone cells, cartilage cells, and muscle cells.  MSCs are currently very significant in stem cell therapy because they can readily be harvested from adult donors, unlike the other types of cells.

  • Unipotent stem cells have the ability to become only one type of cell. For example, the satellite cells of the skeletal muscle are limited to becoming mature skeletal muscle cells.




VARIOUS DELIVERY METHODS OF STEM CELLS

When treating patients for injury or anti-aging purposes there are a variety of stem cell delivery methods, some of the most common approaches are:



Direct injection

This is where the stem cells are injected directly into the site which is being targeted. For example, for arthritis the stem cells would be injected into the affected joint. Or for facial aging, the cells might be injected into the surface of the skin. While there is limited evidence, direct injection of stem cells appears promising.



Grafts

In a graft a bio scaffolds is created to function as a porous and permeable solid structure for stem cell attachment, growth, and migration. This scaffold is then surgically inserted into the site of injury. While there is limited evidence, grafts appear to be a promising method for delivering stem cells to facilitate repair in problem areas.


IV

Some treatments deliver stem cells intravenously. Some doctors claim that the stem cells will be able to target the problem areas in the body and deliver systemic anti-aging benefits. Unfortunately, the evidence to back up this claim is lacking, most stem cells which are injected intravenously end up trapped in the lungs, liver and kidneys (1).



Topical Creams

Some products such as face creams and masks claim they contain stem cell formulations which can be topically applied. There is no evidence that such a formulation would be beneficial as stem cells will not survive in this environment.


ARE STEM CELLS EFFECTIVE FOR ANTIAGING?

Aging is leading risk factor for many diseases, one of the primary causes of diseases like arterial atherosclerosis, Alzheimer’s and Parkinson’s, is the decline in the self-repairing capabilities of our cells as we age. A decline in the rate of cell division and the rate at which stem cells transform into other types of cells is a characteristic of aging. This decline in cell division reduces our ability to repair tissues and maintain organs as we get older. Therefore, stem cell technology is a likely candidate to slow or even reverse the aging process. 

Stem cell treatments have shown promise in promoting our bodies self-repairing capability, and therefore could have powerful anti-aging benefits. As stem cells replace our damaged or non-functioning cells, they help us maintain normal function of our tissues and organs (2) (3). 

Stem cells are also known to secrete various biologically active proteins such as growth factors, cytokines and other proteins that are important in cell signaling and vital immune function. This plays a very important role in tissue regeneration.  For example, mesenchymal stem cells (MSCs) can secrete signal protein - vascular endothelial growth factor (VEGF) that stimulates the formation and regeneration of blood vessels. This provides a big advantage for elderly body's ability to repair and regenerate especially because it's more prone to certain diseases (4).


WHAT ARE THE RESULTS SO FAR?


For Longevity


There currently are no conclusive studies in humans demonstrating that stem cell treatments can increase lifespan, however studies in mice show some promise. In one study stem cells were intravenously transplanted to 10-month-old rats once a month throughout their lives. This led to cognitive and physical improvements and their life span was extended by between 23% and 31% (5).

Caution should be exercised when extrapolating these results to humans. These rats were given very large doses and they were given repeatedly throughout their lifetime. In humans the vast majority of stem cells delivered intravenously end up trapped in the lungs, liver and kidneys, very little makes its was to other vital organs such as the heart and brain. In addition, it is not feasible nor affordable for most people to get treatment every month for the rest of their lives.

FACIAL AGING

The production of collagen starts to decline as we age which leads to wrinkles and sagging skin. One study has shown that many small injections of the stem cells just below the surface of the facial skin led to significant improvements in several markers of skin aging. Stem cells helped with formation of new blood vessels from pre-existing ones, survival of the cells & their division, boosted immune response and they helped with overall collagen degradation (6). 

In addition, fat-derived stem cells are often used in plastic surgery as seed cells. They play important role in prevention of photoaging (premature aging of the skin caused by repeated exposure to ultraviolet radiation (UV) – sun light). As we age, melanocytes (cells that synthesize skin pigment - melanin) become victim to excess sun exposure, inflammation and hormonal changes which can lead to development of unsightly dark spots and hyperpigmentation. This therapy has been shown to help with these aging symptoms.


FOR THE BRAIN

The function of neural cells in our brains declines with age. Aging in the central nervous system is associated with progressive loss of function which is exacerbated by neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. 

Cell therapy may be able to replenish lost cells and restore brain function. There are two primary strategies to achieve cell replacement. The first is transplantation of exogenous stem cells and the second is stimulating the body’s own activation of its neural stem cell population (7).

As most people would not risk injecting stem cells into their brains for potential anti-aging benefits these experimental treatments are reserved for only the most serious brain injuries. However, stimulating the body’s own production of stem cells may be beneficial, this can be done via supplements which are outlined in our anti-aging guide. (8)

FOR THE IMMUNE SYSTEM

It is well established that our immune system becomes less effective as we age. The decline in immune function which we experience with age, is partly due to the loss in efficacy of our bodies blood cells, largely as a result of decreased production of certain blood cells know as B and T lymphocytes. This can lead to various diseases including cancer. 

Hematopoietic stems cells (HSC's) are stem cells which give rise to other blood cells. Some research has suggested that reconstituting HSC or pluripotent stems cells may rejuvenate the supply of stem cells and help boost our immune systems (9).

HSC’s have been used to boost the immune systems of cancer patients for years via bone marrow transplants, however this treatment should only be reserved for extreme life-saving cases and is not suitable for anti-aging purposes. 

A safer alternative may be rejuvenating our existing stem cell populations, this could be achieved through NAD+ supplementation (see our anti-aging report). 


SKELETAL MUSCLES


One of the reasons our muscles can repair so quickly is we have a very large pool of stem cells in our muscles. As we age, we experience a loss of muscle function partly as out muscle stem cell pool is depleted. 

Some therapies have been shown to restore the ability of muscle stems cells to rejuvenate. One of these treatments is NAD+ recruitment as mentioned in our anti-aging report. Supplementation with NAD+ precursors like NR can help protect from the loss of muscle stem cells, this has been demonstrated this effect in mice (10).

FOR OSTEOARTHRITIS

In clinical trials stem cells have been used to regenerate cartilage and safely treat Osteoarthritis (OA).  Stem cells can have beneficial effects in regulating the microenvironment of damaged tissue, leading to more favorable conditions for tissue regeneration. Stem cells have been used in cell therapy to promote the repair of cartilage, muscle, and bone.

There was no serious side effects demonstrated however due to regulatory issues in the US only Stromal Vascular Fraction (SVF), a cellular extract that is made in a laboratory from fat is currently approved for clinical uses in humans. SVF only contains a small amount of stem cells (11). 

STEM CELL THERAPY – COST, BENEFITS & SIDE EFFECTS

Stem cell therapy can cost anywhere between $500 to $50,000. 

The cost depends on many variables such as the type of stem cells that are being used, where you are performing the treatment, where the laboratory is located, and if the cells that are being used are ethically sourced & regulated.


SIDE EFFECTS & RISKS

Some serious side effects that can occur include: 

  • Administration site reactions

  • The ability of cells to move from placement sites and change into
    inappropriate cell types or multiply

  • Failure of cells to work as expected

  • The growth of tumors.

Unproven stem cell treatments can be unsafe, so remember - make sure to do your research and ask as many questions as you can before you to commit to an actual treatment. If you are considering treatment in the United States, ask your health care provider if the FDA has reviewed the treatment.


CONCLUSION
 

The results from clinical trials and studies have demonstrated that stem cell have great potential for regeneration medicine and help with age-related problems such as slower regeneration time and degradation of our tissues. However, stem cell treatments are still regarded as experimental in the US. With further development of stem cell technology, it is only a matter of time before it becomes an effective treatment for aging-related diseases and offer new kind of alternatives for antiaging.

Being treated with stem cells is also not without significant risks, including the potential to cause cancer.  Therefore, restraint is advised. Stem cell therapies should only be considered where other options are not effective. If you choose to have a stem cell treatment make sure you go to an approved and accredited facility. Also, it is best to consider treatments which have already shown some promise such as site injections or scaffolds, avoid anyone touting the benefits of a systemic intravenous injection.  


REFERENCES

1) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5260805/

2) Tsang SH (2013) Stem cell biology and regenerative medicine in ophthalmology. Springer, New York

3) Somasundaram I (2014) Stem cell therapy for organ failure. Springer, New Delhi

4) https://www.ncbi.nlm.nih.gov/pubmed/25797907

5https://www.ncbi.nlm.nih.gov/pubmed/26315571

6) https://doi.org/10.1155/2016/7315830

7) https://doi.org/10.1111/j.1582-4934.2002.tb00451.x

8) https://www.nature.com/articles/s41536-017-0033-0

9) https://doi.org/10.5966/sctm.2014-0132

10) https://doi.org/10.1126/science.aaf2693

11) https://doi.org/10.1186/s13018-016-0378-x